Santa Monica Beach Restoration Pilot Project

Year 1 Annual Report

August 2017

Prepared for:
City of Santa Monica
California Coastal Commission
Metabolic Studio, Annenberg Foundation
US Environmental Protection Agency
California Department of Parks and Recreation

The Bay Foundation
P.O. Box 13336, Los Angeles, CA 90013
(888) 301-2527
www.santamonicabay.org
Santa Monica Beach Restoration Pilot Project
Year 1 Annual Report

31 August 2017

Prepared by: The Bay Foundation

Prepared for:
City of Santa Monica
California Coastal Commission
Metabolic Studio, Annenberg Foundation
US Environmental Protection Agency
California Department of Parks and Recreation

Authors:
Karina Johnston, Melodie Grubbs, and Rodney Abbott, The Bay Foundation

Scientific Contributors:
Dave Hubbard, Coastal Restoration Consultants, Inc.
Dr. Jenifer Dugan, University of California Santa Barbara
Dan Cooper, Cooper Ecological Monitoring, Inc.
Dr. Karen Martin, Pepperdine University
Dr. Sean Anderson, California State University Channel Islands
Dr. Guangyu Wang, Santa Monica Bay Restoration Commission
Evyan Sloane, California State Coastal Conservancy

Suggested Citation:

Acknowledgements
We would like to thank the US Environmental Protection Agency and the Metabolic Studio (Annenberg Foundation; Grant 15-541) for funding this pilot project, and our partners: City of Santa Monica and California Department of Parks and Recreation. Their support has allowed us to explore soft-scape protection measures to increase coastal resilience, while bringing back an important coastal habitat to the Los Angeles region. We would also like to thank the many students, volunteers, and supporters of this project – without which it would not have happened.

The contents of this report do not necessarily reflect the views and policies of the US Environmental Protection Agency or Metabolic Studio, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.
Table of Contents

Executive Summary.. 1
Introduction .. 2
 Background ... 2
 Project Goals ... 3
 Project Description ... 4
 Restoration Design .. 8
Public Outreach .. 9
 Selected Media Links .. 10
Permitting ... 12
Implementation .. 13
 Sand Fence Installation ... 14
 Hand-Seeding of Native Plants ... 17
 Ribbon Cutting Ceremony ... 23
Scientific Monitoring .. 24
 Individual Protocol Details .. 24
 Wrack Cover .. 25
 Vegetation Cover and Seedling Density .. 28
 Invertebrates .. 35
 Avifauna ... 37
 Grunion and Other Wildlife ... 42
 Physical Characteristics .. 42
 Photo Point ... 51
Adaptive Management, Maintenance, and Site Use .. 56
 Site Use ... 57
Conclusions and Recommendations .. 59
Literature Cited ... 61
List of Figures

Figure 1. Photographs from the restoration area of foraging shorebirds and vegetation. 3
Figure 2. Photograph of the project site prior to restoration at Santa Monica Beach, Santa Monica, CA. 5
Figure 3. Map of the Santa Monica Beach Restoration Pilot Project location and general vicinity. 5
Figure 4. Artistic rendering overview of project area, post-establishment of vegetation (rendering credit: Mia Lehrer and Associates). .. 6
Figure 5. Photograph of post-restoration project site (25 January 2017). .. 7
Figure 6. Photograph of post-restoration project site (21 August 2017). 7
Figure 7. Restoration site graphic design, including two treatment plots (T1 and T2). 8
Figure 8. Photograph of community stakeholder meeting held on 30 April 2016. 9
Figure 9. Artistic rendering of project site several years in the future by Mia Lehrer and Associates. 10
Figure 10. Clipped media articles (top, middle) and a postcard mailer sent to 200 local residents as an invitation to a public meeting (bottom). .. 11
Figure 11. Photographs of 1 November 2016 group meeting of beach departments on site.......... 13
Figure 12. Installation series of the sand fence and symbolic rope pathway on 6 and 7 December 2016. 16
Figure 13. Restoration site graphic design, including two treatment plots (T1 and T2). 17
Figure 14. View looking south from the symbolic rope pathway immediately post-seeding and raking on 14 December 2016.. 18
Figure 15. Seed mixture provided by S&S Seeds, Inc... 18
Figure 16. Camissoniopsis cheiranthifolia (beach evening primrose) growing in the project area (21 June 2017). .. 19
Figure 17. Abronia maritima (Sand verbena) growing in the project area (21 June 2017). 20
Figure 18. Ambrosia chamissonis (beach bur sage) growing in the project area (top: 23 February 2017, bottom: 21 May 2017). ... 21
Figure 19. Atriplex leucophylla (beach salt bush) growing in the project area (21 June 2017). 22
Figure 20. Photograph of ribbon cutting ceremony on 9 May 2017. ... 23
Figure 21. Photographs of giant kelp (Macrocystis pyrifera, top) and mixed wrack and terrestrial debris (bottom) along a wrack transect in the restoration area (21 June 2017). 26
Figure 22. Average percent cover of wrack by species (top) and terrestrial debris and trash (bottom) in the restoration area and control site across the four surveys. .. 27
Figure 23. Total distance (m) by species for all transects combined... 29
Figure 24. Photograph of woolly heads (native Nemacaulis denudata) growing in the restoration area (18 July 2017). ... 29
Figure 25. Photograph of sea rocket (non-native, Cakile maritima) outside the project area (14 February 2017). .. 30
Figure 26. Average native and non-native vegetation cover during all surveys within the restoration area (top) and at the control site (bottom). ... 30
Figure 27. Photograph of native vegetation growing along the northern fence line (21 August 2017). 31
Figure 28. Photographic series of various seedling species over time (top: 25 January, middle: 12 April, bottom two: 21 June 2017)... 34
Figure 29. Photograph of researchers conducting invertebrate core surveys (28 December 2016). 35
Figure 30. Beach ecologist, Dave Hubbard, and LMU interns collecting invertebrate cores (21 June 2017). .. 36
Figure 31. Dune beetle trails between vegetation within the restoration area (18 July 2017) 37
Figure 32. Photograph of willet inside restoration area (4 March 2017; credit: M. Grubbs) 38
Figure 33. Map of WSP critical habitat (Subunit CA 45A) from the Federal Register (19 June 2012) 40
Figure 34. Photograph of nesting western snowy plover (credit: Tom Ryan 24 April 2017) 41
Figure 35. Group photograph of installation team for the mini-enclosure including several ornithologists and USFWS (24 April 2017) ... 41
Figure 36. Precipitation total (inches) by month for the water year (beginning on 1 October 2016 through 31 July 2017). Data were downloaded from Los Angeles County Department of Public Works Electric Avenue precipitation gage on 29 August 2017 .. 43
Figure 37. Topographic map of restoration area (survey conducted on 12 April 2017) 46
Figure 38. Photograph of sand build-up along the northern fence line in the restoration area (9 May 2017) .. 46
Figure 39. Berm topography (left: 17 December 2016, right: 25 January 2017) 47
Figure 40. Baseline (top) and post-restoration (bottom) sand grain results for all transects (dry sample averages) .. 48
Figure 41. Sand grain examples in restoration site [left: pebbles (very fine); middle: course sand; right: fine to very fine sand] ... 49
Figure 42. MWAC samplers deployed at restoration site .. 50
Figure 43. Cobble present in site after high king tide events (25 January 2017) 50
Figure 44. Sand accretion along fence in restoration site (29 April 2017) .. 51
Figure 45a. Photo Point 1A (bearing 88°) surveyed on (A) 13 December 2016; (B) 17 December 2016; (C) 13 January 2017; (D) 25 January 2017 ... 52
Figure 45b. Photo Point 1A (bearing 88°) surveyed on (E) 4 February 2017; (F) 24 March 2017; (G) 25 April 2017; (H) 21 August 2017 .. 53
Figure 46a. Photo Point 1A (bearing 210°) surveyed on (A) 13 December 2016; (B) 17 December 2016; (C) 13 January 2017; (D) 25 January 2017 ... 54
Figure 46b. Photo Point 1A (bearing 210°) surveyed on (E) 4 February 2017; (F) 24 March 2017; (G) 25 April 2017; (H) 21 August 2017 .. 55
Figure 47. Non-native sea rocket within the project area (21 August 2017) .. 56
Figure 48. Trash collected after a storm event from within and adjacent to the project area (25 January 2017) ... 57
Figure 49. Human use of the restoration site [top: TBF-led tour with US EPA staff (15 February 2017); middle: stand up paddle boarders using the symbolic pathway through the middle of the restoration area (17 December 2016); bottom: beach running event in front of fenced restoration area (24 August 2017)] ... 58
List of Tables

Table 1. Custom seed mix design by species. ... 18
Table 2. Summary of key parameters, protocols implemented, and their frequency of occurrence. 25
Table 3. Seedling data results by species for 24 March 2017 reported as counts, number / m², and extrapolated counts for the entire restoration area (last row). ... 33
Table 4. Avifauna species identified as present in the restoration area and in the surrounding area adjacent to the restoration. Data for all surveys were combined. ... 38
Table 5. Summary data for temperature and wind speed collected on site during surveys. 43
Table 6. Table displaying NOAA temperature and humidity monthly data for the Santa Monica Municipal Airport Station (downloaded on 1 September 2017). ... 44
Table 7. Table displaying NOAA wind speed and precipitation monthly data for the Santa Monica Municipal Airport Station (downloaded on 1 September 2017). ... 44
Table 8. Grain size results from December 2016 (baseline) and post-restoration (March 2017). 49
Executive Summary

This report summarizes activities for the Santa Monica Beach Restoration Pilot Project from the time period December 2015 through August 2017. During this time period, the restoration was implemented in two phases over the course of two weeks including the installation of fencing and seeding of native coastal strand vegetation species. The first eight months following the pilot project implementation had a number of valuable successes and learning experiences. As the project was meant to be an experimental pilot for the region, no specific, quantifiable success criteria were set; however, the project can be evaluated against its ability to meet the project goals. The project positively engaged the public, created new partnerships and outreach connections, restricted grooming in an approximately 3-acre area, allowed vegetation to grow and the beginning of sand hummocks to form along fence lines, provided comprehensive science-based monitoring data to inform soft-scape beach restoration solutions, and is bringing back a rare coastal habitat type to the Los Angeles region.

Additionally, the increased functions within the restoration habitat area included benefits to several notable species. Nesting of the federally threatened western snowy plover had not been recorded in the Los Angeles region for almost 70 years, and the first nest for the Los Angeles region was found within the restoration area and contained three eggs. Plovers were repeatedly identified on bird surveys through the spring months. Unfortunately, due to heavy wind, the nest was abandoned. But its presence and that of several additional subsequent nests this year in other parts of Los Angeles suggests that the possibility of future nests by plovers in the area is likely. Furthermore, a new native plant species, possibly a rare variant of woolly heads (*Nemacaulis denudata*), was identified as germinating in the project area. As the seeds of this species are not sold by the seed provider, it is probable that there was either an existing seed bank for this species already along Santa Monica Beach, or that it was transported by wind, waves, birds, or humans. It was not identified in areas adjacent to the project site. Another new addition to the restoration project area were dune beetles, which provide an increased layer of the food web available to foraging birds and wildlife. Specimens were not collected for identification, but may potentially be collected in the future.

Data suggest that the restoration area is considerably different from both the control sites and from itself as compared to the baseline surveys, especially for vegetation and sand morphology, though vegetation cover remains fairly low after the first growing season. Multiple years will allow an evaluation of the vegetation cover trend over time. It is likely that the vegetation community will continue to establish, but will probably remain somewhat patchy, as is the trend for natural coastal strand habitat types. The variability of the berm over time and the changes in elevation suggest that longer periods of time for scientific evaluation for these parameters will also allow for additional trends to be defined. Future monitoring will continue to inform sand morphology within the restoration site in response to vegetation growth, fence placement, and seasonal changes from storms, king tides, and wave energy. Additionally, elevation profile data will provide information to understand the effects of sand grooming versus the development of natural beach morphology over time.

For more information, details, artistic renderings, and links to public documents, reports, and photographs, please visit the project website: http://www.santamonicabay.org/santa-monica-beach-restoration-pilot/.
Introduction

Background

Over 17 million visitors frequent the beaches of Santa Monica every year. Beaches are broadly recognized and highly valued as cultural and economic resources for coastal regions (Dugan et al. 2015). However their value as ecosystems is often less appreciated. Southern California beach systems and associated wildlife are highly impacted by threats, including native species extirpation and extinction, erosion, non-natural sediment and sand transport through mechanical means, pollution, and loss of natural morphology due to daily vegetation and top soil removal through grooming and other regular maintenance (Dugan et al. 2003). However, these systems also offer essentially the last line of defense in terms of natural “softscape” protection as components of a living shoreline. As a vital part of our coastline, beaches and dunes support and protect our homes, roads, and infrastructure, providing a natural buffer from sea level rise (SLR) as well as from tidal and wave action from the ocean. Beach habitats and dunes are critical in managing sand transport to create resilient beach morphologies, which naturally buffer climate change impacts. By restoring natural processes to impacted beach systems, we improve their ecological and utilitarian functions, and serve as a model for similar projects statewide.

Since the 1960s, beaches in the Los Angeles area have been subjected to the continuous removal of natural features as they begin to develop. Mechanical maintenance of beaches has significant impacts on the physical and biological processes of natural beach and dune ecosystems (Dugan et al. 2003, Dugan and Hubbard 2009, Hubbard et al. 2013). Over much of the state, and in many parts of the country, beaches are not frequently groomed, but are instead allowed to develop natural features, such as low dunes away from active recreation areas. These features not only support native, and in many cases, rare and endemic species of plants and animals, they also provide a cost-effective buffer to storm surges and other regular, predictable threats, including SLR and increased erosion.

In addition to providing habitat for avifauna, including Federally-designated “Critical Habitat” (US Fish and Wildlife Service) for the threatened western snowy plover (Charadrius nivosus alexandrius), coastal strand habitats have a varied native vegetation community, including species such as red sand verbena (Abronia maritima), dune evening-primrose (Camissoniopsis cheiranthifolia), and beach saltbush (Atriplex leucophylla), and provide a vital habitat for invertebrate species. Thus, the current condition of groomed and flattened sand with vegetation removed for most of the beaches in Los Angeles and the Santa Monica Bay provides almost no habitat value and removes all of the ecosystem services (Dugan et al. 2003, Hubbard et al. 2013, Gilburn 2012). Without vegetation, erosion is more frequent and there is nothing to trap wind-driven aeolian transport of sand (Nordstrom et al. 2011).

Restored conditions of the beach include no mechanized ‘flattening’ of the sand and removal of vegetation. After seeding and planting vegetation, sandy coastal strand habitats and plant hummocks are starting to develop, which then support higher levels of the ecological community (e.g. invertebrates, birds). Recent scientific literature highlights the need for ecosystem-level, rather than species-level, beach restoration planning to achieve the greatest ecological benefits (e.g. Schlacher et al. 2008). This project represents one example of that model.
Project Goals

This pilot project restored approximately three acres of sandy coastal strand habitat located on the beaches of Santa Monica by utilizing existing sediments to transform a portion of the current beach into a sustainable coastal strand and foredune habitat complex resilient to sea level rise. As an alternative to traditional hardscaping options, this project will continue to evaluate a living, restored shoreline with a diverse wildlife community as an alternate approach to combat climate change (Figure 1).

Another project goal was to bring back a diverse, endemic-rich, coastal plant and wildlife community which has been almost completely extirpated from the Los Angeles region. Returning broad ecosystem functions will create increased protection for coastal infrastructure and residences from sea level rise and erosion while providing a vital refuge for invertebrates, birds, and rare coastal vegetation species.

This demonstration site will also serve as a model for the region, showing that heavy recreational use of beaches and meaningful habitat restoration are not incompatible goals. It will provide not only a scientific basis to develop guidelines and protocols but an integrated, locally-based program for increasing the usefulness of natural environments in a developed area. It will evaluate “soft” low-cost natural shore protection from sea-level rise and storms while providing public benefits and enhancing natural resource values. All of these benefits are expected to have low-to-no impact on existing recreational uses of the beach.

Additional benefits of healthy beach ecosystems include, but are not limited to:

- Enhancing a developed coastline
- Critical habitat for rare coastal strand vegetation and invertebrate species
- Habitat for birds, possibly including the threatened western snowy plover
- Familiarizing residents, especially children, with a healthy, natural landscape
- Promoting tourism through unique aesthetic and bird watching opportunities
- Educational opportunities including native plants and healthy beach management practices
- Understanding of a ‘soft-scape’ climate change protection project
- Natural shoreline protection through buffering and absorption of wave energy
- Sea water filtration and food web support
- Detrital processing and nutrient recycling

Figure 1. Photographs from the restoration area of foraging shorebirds and vegetation.
Project Description

The pilot project of approximately three acres aims to return a healthy and beautiful ecosystem to Santa Monica State Beach (Figure 2), which in turn, will address climate change issues for both humans and wildlife. This pilot project used low-lying sand fencing and native plant seeds to actively restore approximately two out of three acres of a highly impacted beach system (Figures 3, 4, 5, and 6). The third acre is comprised of the dry and wet sand shore-ward of the project area that will remain ungroomed (passive restoration through not raking the sand), and the area immediately adjacent to the perimeter of the sand fence, which will also remain ungroomed.

Design aspects feature curved, flowing, low-lying fence lines, a path through the restoration area, and an unenclosed perimeter along the water’s edge – all components requested by various members of the public during the first few months of outreach about the project. Many of these design components were incorporated to minimize disturbance, and even enhance different forms of interactions and recreation along the beach. The site allows visitors to continue to recreate as well as enjoy the local native flora and fauna that are currently absent along the groomed beaches of the Santa Monica Bay.

Specialized coastal strand and foredune vegetation was seeded and is currently growing, developing, and trapping sand transported by wind. Wind-driven sand bumps into vegetation, falls, and accretes, naturally increasing the elevation of plant hummocks over time to a future estimated height of 1-3 feet. Additional trapping of sand has occurred through the deployment of sand fencing. Because beach dunes have the potential to accrete sediment transported from the ocean they could continue to grow concurrently with rising sea levels. This dynamic process can continue as long as the vegetation community is robust and healthy. This process has repeatedly been demonstrated in the scientific literature as well as in pilot projects in other California counties, such as the Surfer’s Point restoration project in Ventura County. Long-term monitoring will define trends at this site.

Project implementation began in November and December 2016, and required approximately 3 weeks, including monitoring. It will be followed by post-restoration monitoring for a time period of no less than five years. For more information, details, artistic renderings, maps, and links to public documents and photographs, please visit the project website: http://www.santamonicabay.org/santa-monica-beach-restoration-pilot/ (Figure 3).

This project would not have been possible without two additional project partners: City of Santa Monica (land managers) and California Department of Parks and Recreation (land owners). We are very grateful for their support and enthusiasm in the implementation of this pilot project. Additionally, we are also grateful for the many proponents and supporters of this project, including but not limited to: Audubon Society – Santa Monica Chapter, Loyola Marymount University, University of California, Santa Barbara, Cooper Ecological Monitoring, Inc., Coastal Restoration Consultants, Inc., California Native Plant Society, Congress Member Ted Lieu, Assembly Member Richard Bloom, Senator Fran Pavley, Los Angeles World Airport Dune Preserve, Friends of Ballona Wetlands, US Fish and Wildlife Service, Heal the Bay, University of Southern California SeaGrant, Santa Monica Bay Restoration Commission, Santa Monica Bay National Estuary Program, US Environmental Protection Agency, Patagonia, Council Member Paul Koretz, Girl Scout Troop 10975, Friends of LAX Dunes, Mia Lehrer and Associates, US Green Building Council – LA, beach managers throughout Southern California, and many local residents!
Figure 2. Photograph of the project site prior to restoration at Santa Monica Beach, Santa Monica, CA.

Figure 3. Map of the Santa Monica Beach Restoration Pilot Project location and general vicinity.
Figure 4. Artistic rendering overview of project area, post-establishment of vegetation (rendering credit: Mia Lehrer and Associates).
Figure 5. Photograph of post-restoration project site (25 January 2017).

Figure 6. Photograph of post-restoration project site (21 August 2017).
Restoration Design

The project area is divided into two, roughly 1-acre, treatment plots (T1, or the North plot, and T2, or the South plot; Figure 7). The treatment plots are separated by a curved path, bordered by a symbolic rope fence. The exterior perimeter (except for the ocean-ward side) is surrounded by a low-lying sand fence (approximately 3 feet in height). Each treatment plot is further subdivided into four quadrants for analysis, though there are no physical barriers within the treatment plots. This subdivision allowed for an experimental treatment design by implementing two different seeding protocols.

![Restoration site graphic design, including two treatment plots (T1 and T2).](image)

Permitting, implementation, and post-restoration maintenance and monitoring is coordinated and conducted by The Bay Foundation (TBF) and consultants.
Public Outreach

Significant public outreach has been conducted as part of this project through meetings, events, tours, social media, newspaper articles, newsletters, and a project webpage. Outreach is ongoing and also occurs on-site to beach visitors who have questions and through local media. The ability for the public to interact with, learn from, and benefit from this project are vital components of the project goals.

Members of the public had multiple opportunities to provide feedback about the project (Figure 8), and suggested changes were incorporated into the project design. Public-requested components include, but are not limited to, the curved sand fence, a 3-foot maximum fence height, several of the flowering plant species (e.g. sand verbena), no fence along the open ocean side of the project, and an extra buffer of open space on the ocean-ward side of the project area to allow for pedestrian traffic and lifeguard vehicle emergency access. Additionally, outreach occurred in advance of the application for permitting from the California Coastal Commission, in accordance with permit conditions for the project. More than 20 public meetings, tours, or media articles occurred for this project prior to its implementation. Since implementation in December 2016, many additional news articles and tours have occurred. Additionally, several television segments have also aired, including on KNBC, KCAL, and KSCI.

Possibly the most significant outreach occurred through the development of a website that highlighted artistic renderings of the project completed by Mia Lehrer and Associates (Figure 9), photographs, and project information and materials. The project website and frequently asked questions can be found here: http://www.santamonicabay.org/explore/beaches-dunes-bluffs/beach-restoration/santa-monica-beach-restoration-pilot/. Selected media links are presented below the outreach photographs. Figure 10 displays the postcard mailer sent as an invitation to a public meeting on 30 April 2016, held prior to project implementation and permitting. Lastly, TBF continues to find opportunities to share the project and ongoing monitoring results to beach managers and coastal scientists in the region. TBF staff presented at a Beach Ecology Coalition Meeting, LA County Beach Commission meeting, and a Southern California Living Shorelines workshop. TBF has also been invited to speak about the project as part of a NOAA Coastal Resiliency Network webinar.

Figure 8. Photograph of community stakeholder meeting held on 30 April 2016.
Figure 9. Artistic rendering of project site several years in the future by Mia Lehrer and Associates.

Selected Media Links

- [KPCC 89.3 interview](#) with Executive Director Tom Ford on 7 December 2016 (screen capture below).
- [Santa Monica Lookout](#) article on 5 December 2016.
- [Curbed LA](#) article on 6 December 2016.
- [Next City](#) article about the project on 16 March 2017.
- [Ventura County Star](#) article about the project and plovers on 8 May 2017.
- [Daily Breeze](#) article about the Western Snowy Plovers nesting on site on 9 May 2017.
- [KCET](#) article about the project on 9 May 2017.
- [Los Angeles Times](#) article about the project and plovers on 10 May 2017.
- [Santa Monica Daily Press](#) article about the Western Snowy Plovers nesting on 11 May 2017.
- [The Argonaut](#) article mentioning project in context of sea level rise in LA on 5 July 2017.
- [Stormwater Solutions](#) article on 10 August 2017 (screen capture below)
Figure 10. Clipped media articles (top, middle) and a postcard mailer sent to 200 local residents as an invitation to a public meeting (bottom).
Permitting

TBF, in coordination with the City of Santa Monica (City) and California Department of Parks and Recreation (DPR), obtained the necessary permits to implement the Santa Monica Beach Restoration Pilot Project. Approval from the City at a public City Council meeting in the form of a Memorandum of Understanding (MOU) and restoration site plan stamped and approved by the Planning Department was obtained prior to the submittal of a Coastal Development Permit application to the California Coastal Commission (Commission). Additionally, a CEQA exemption was filed and obtained by the City to implement this project.

In October 2016, the Commission approved permit application No. 5-16-0632 with the following special conditions:

1) An assumption of risk, waiver of liability and indemnity;
2) Limited development authorization period;
3) Dune habitat creation plan;
4) Public access requirements; and
5) Permit compliance.

Permit condition 1 included a waiver signed by the City and DPR. Regarding permit condition 2, CDP (No. 5-16-0632) authorizes the approved beach restoration project for a period of five years from the date of Commission action. After such time, the authorization for continuation and active management of the dune habitat shall cease, unless the applicants submit an amendment to this permit, or new CDP application to the Commission, and that amendment or permit is approved, thereby extending the time period for the project. The dune habitat created pursuant to the permit may remain in place. The third permit condition was met by the Implementation and Monitoring Plan and the Site Plan. Permit conditions 4 and 5 will be met throughout the duration of the project.

Lastly, coordination and communications are ongoing with federal and state agencies with an interest in this project, beach management, and/or wildlife (e.g. US Fish and Wildlife Service). All annual reports for this project will be made publically available on The Bay Foundation’s (TBF) website: www.santamonicabay.org.
Implementation

Implementation of this project occurred during the rainy season to allow for natural germination and establishment of native seeds during the winter rains. The project was implemented in two phases. The first phase, installation of fencing, including a perimeter sand fence and symbolic rope and post pathway, was completed on 7 December 2016. The second phase, native coastal strand and dune vegetation seeding, was completed on 14 December 2016. Monitoring and maintenance are ongoing. Prior to the commencement of the restoration phases, a large group meeting was held on 1 November 2016 with beach management stakeholders including representatives from police, maintenance and trash, beach managers, lifeguards, Office of Sustainability and the Environment, State Parks, TBF, and many others to make sure the all involved parties were aware of the process and timeline (Figure 11).

Figure 11. Photographs of 1 November 2016 group meeting of beach departments on site.
Sand Fence Installation

The first phase installed sand fencing to facilitate the establishment of dune hummocks and to delineate the project boundary. The sand fencing as installed was approximately 36 inches (3 feet) in height above the sand, and it was designed to be removable in the event of significant storm events or emergencies. T-posts were used to stabilize wood sand fence panels. The sand fence ended approximately 25 feet (8 meters) before the edge of the sand berm on the ocean side of the sand fence to encourage recreational activities adjacent to the ocean, and to allow for plenty of space for lifeguard vehicles to have emergency access, though driving within the project area is discouraged to allow for a more natural pattern of sand movement and wildlife use. The distance of the fence edge from the berm has fluctuated throughout the first eight months of the project as the berm periodically eroded and accreted with natural sand movement.

Additionally, no fence was installed along the ocean ward border – the public was welcome to still enter the project area, though signs encourage respect towards the plants and wildlife. New signs installed in April 2017 after a nesting threatened species was identified on site reminded people to stay outside of the project area to protect the birds (see more detail in “Avifauna”, below).

A symbolic post and rope fence was installed through the center of the project site to accommodate an approximately 5-foot wide by 164-foot long sandy trail which serves to provide public access to the shore. The post and rope fence is approximately 36 inches (3 feet) in height and designed to be removable in the event of significant storm events or emergencies (Figure 12).

Specific fence installation steps were conducted as follows:

1. Conducted pre-installation GPS survey to mark project boundary
2. Flagged georeferenced GPS points for each t-post and wood fence post
3. Pounded t-posts 2.5 feet into sand
4. Dug 2-foot deep fence trench with volunteers and shovels
5. Unrolled and placed sand fence along t-posts and in trench
6. Connected sand fence to t-posts using wire
7. Filled in trench and compacted sand to stabilize sand fence
8. Dug 2-ft deep holes for pathway wood fence posts
9. Installed pathway wood fence posts
10. Strung rope through holes drilled in wood fence posts to delineate pathway
11. Performed installation checks throughout length of sand fence and symbolic post fence

Both the sand fence and the symbolic fence were installed on 6 and 7 December 2016 with the help of TBF staff, volunteers, and the City of Santa Monica beach maintenance staff. Subsequent photographs document the installation of the sand fence (Figure 12). We are grateful to all of the help from volunteers and the questions and support from interested members of the public during the installation.
Figure 12. Installation series of the sand fence and symbolic rope pathway on 6 and 7 December 2016.
Hand-Seeding of Native Plants

The second phase of the installation involved hand-seeding native coastal strand vegetation species within the project area on 14 December 2016. Seed was sourced from S&S Seeds, who have over 30 years of experience with California native wildland seed and have provided seed for coastal dune, bluff, and wetland habitat restoration projects across all of California. TBF consulted with restoration experts and S&S Seeds to develop a specialized plant pallet and custom seed mix design specific to local coastal strand habitat.

The combined seed mix with all four species was distributed across the restoration site using two methods at a rate of 20.1 pounds per acre across the site. The first method used a broadcast hand seeder with the combined seed mix immediately raked into the sand. The second method involved hand sowing seeds that had been soaked overnight in fresh water into small depressions in the sand (e.g. footprints) and covering them by hand with adjacent sand to a depth of approximately one inch.

The restoration site fence placement and symbolic pathway are shown in Figure 13. Treatment 1 (T1) and Treatment 2 (T2) identify the north and south sections, respectively, of the restoration area, separated by the symbolic pathway. T1 and T2 are further segmented into quadrants. Spotted quadrants (Q2, 3, 6, and 7) received the soaked and hand sown method of dispersal and the others received the broadcast and raking method of dispersal (Figure 14). This allowed for a comparative assessment of vegetation growth using both methods. The seed mix is shown in Figure 15.

![Figure 13. Restoration site graphic design, including two treatment plots (T1 and T2).](image)

Table 1 outlines the four species included in the custom seed mix along with the seeding rate and number of pure live seeds per pound. Each of the coastal strand habitat plant species are discussed in detail below. Native plant species characteristics and growing patterns were replicated from CalFlora (www.calflora.org) and S&S Seeds databases. Photographs of the plants were taken from within the project area after germination.
Figure 14. View looking south from the symbolic rope pathway immediately post-seeding and raking on 14 December 2016.

Figure 15. Seed mixture provided by S&S Seeds, Inc.

Table 1. Custom seed mix design by species.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Common Name</th>
<th>Lbs / Acre</th>
<th>Number of Pure Live Seeds / Lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camissoniopsis cheiranthifolia</td>
<td>Beach evening primrose</td>
<td>0.10</td>
<td>2,441,000</td>
</tr>
<tr>
<td>Abronia maritima</td>
<td>Sand verbena</td>
<td>12.00</td>
<td>16,000</td>
</tr>
<tr>
<td>Ambrosia chamissonis</td>
<td>Beach bur sage</td>
<td>6.00</td>
<td>40,000</td>
</tr>
<tr>
<td>Atriplex leucophylla</td>
<td>Beach salt bush</td>
<td>2.00</td>
<td>73,600</td>
</tr>
</tbody>
</table>
Camissoniopsis cheiranthifolia (beach evening primrose) is a perennial native to California and is a low-lying shrub that provides good ground cover and soil/dune stabilization. This plant species is native to open dunes and sandy soils, growing prostrate along the beach surface and forming mats. Typically blooming from as early as January to the end of August, beach evening primrose features small solitary bright yellow flowers, and is tolerant to low water conditions, surviving year round on seasonal winter rains and ocean spray (Figure 16).

Figure 16. Camissoniopsis cheiranthifolia (beach evening primrose) growing in the project area (21 June 2017).
Abronia maritima (Sand verbena) is a beach-adapted perennial, native to the coastlines of southern California, including the Channel Islands, and northern Baja California. Sand verbena is a mat-like herb growing under 1 foot, with fleshy leaves, and clustered pink to purple flowers which bloom in the spring and summer (Figure 17). Sand verbena was chosen for its association with fore-dune habitats and ability to stabilize sand and create small dunes as well as its characteristics of high salt tolerance and low water requirements.

Figure 17. *Abronia maritima* (Sand verbena) growing in the project area (21 June 2017).
Ambrosia chamissonis (beach bur sage) is a low-lying perennial herb native to California’s coastline. This plant species is commonly found along the coastline and dune environments and produces tiny clustered blooms from June to July (Figure 18). Beach bur sage has a high salt tolerance, low water requirement, and is conducive for sand stabilization and dune formation.

![Ambrosia chamissonis (beach bur sage) growing in the project area (top: 23 February 2017, bottom: 21 May 2017).](image)
Atriplex leucophylla (beach salt bush) is a perennial herb native to the sandy beaches and dunes of the California coastline. Like the other species in the seed pallet, beach salt bush has a high salt tolerance and low water requirement, with the capability of surviving harsh dynamic coastal environments. Beach salt bush forms low-lying mats that spread up to 3 feet and blooms from April to October with tiny inconspicuous green flowers (Figure 19).

Figure 19. Atriplex leucophylla (beach salt bush) growing in the project area (21 June 2017).
Ribbon Cutting Ceremony

On 9 May 2017, TBF, in partnership with the City of Santa Monica, held a ribbon cutting event for the beach restoration site at the Annenberg Community Beach House (Figure 20). The goal of the ceremony was to formally announce the installed project to the public, provide a venue for questions, and to encourage media to help inform the public about the project. Speakers included Tom Ford, Executive Director of TBF, and Ted Winterer, Mayor of the City of Santa Monica. A USFWS biologist, Chris Dellith, also gave a short talk on the recent discovery of the federally threatened snowy plover nest on site. The event brought supporters, including the California Coastal Conservancy and Los Angeles Audubon Society, local organizations, and interested community members. Media and news reporters were also present to conduct interviews with TBF and City of Santa Monica staff, and document the restoration project. The ribbon cutting concluded with a tour of the site and refreshments back at the Beach House.

Figure 20. Photograph of ribbon cutting ceremony on 9 May 2017.
Scientific Monitoring

Accurate and robust scientific monitoring is a vital part of any restoration project. Monitoring is used to assess successful project implementation; for example, in this project, monitoring will allow an assessment of accretion rates of sand and elevation increases to combat sea level rise. TBF is currently implementing a biological, physical, and human use long-term monitoring plan to quantifiably evaluate the project over time. Additional “control” data are collected along the adjacent unrestored beach as part of a before-after-control-impact ecological assessment monitoring program. Specialist scientists such as ornithologists and invertebrate biologists are partners in this project and will use their expertise to advise both the monitoring program and its implementation. Data will be collected for up to ten years to evaluate the ecological health of the created coastal strand ecosystem and its potential for long-term adaptation to accelerated rates of sea level rise.

The development of the monitoring plan was conducted with the input from many scientific advisors throughout southern California (details can be found in the “Implementation and Monitoring Plan” document available on the website). Additionally, data were collected to help inform other projects in southern California evaluating “softscape” methods of shoreline protection.

Pre-restoration baseline monitoring occurred prior to the implementation of the seeding component of the restoration project to allow a comparison of the pre- and post-project conditions of the area. Post-restoration monitoring occurred beginning in January 2017. Table 2 summarizes the monitoring sampling design that occurred from the time period 1 December 2016 through 31 August 2017. It lists nine major parameters, the primary protocol(s) implemented for each parameter, and the frequency of implementation. Additional protocols for management efforts such as trash collection, human use, and invasive vegetation removal are described in the adaptive management section of the report, below.

Individual Protocols and Results

Each of the following subsections summarizes an individual protocol methods and results implemented as part of the monitoring program. For in depth details on objectives, equipment, field preparation, field methods, quality control check procedures, and datasheets, refer to the individual Standard Operating Procedures listed below within the California Estuarine Wetland Monitoring Manual, publically available for free download: http://www.santamonicabay.org/california-estuarine-wetlands-monitoring-manual-level-3/. Additionally, some protocols were adopted from Dugan et al. 2015 Final Report: Baseline Characterization of Sandy Beach Ecosystems along the South Coast of California.
Table 2. Summary of key parameters, protocols implemented, and survey dates.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Protocol</th>
<th>Survey Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrack Cover</td>
<td>Percent cover and composition by species</td>
<td>28 December 2016*, 14 February, 12 March, 21 June 2017</td>
</tr>
<tr>
<td>Vegetation Cover and Seedling Density</td>
<td>Transects assessing cover by species; quadrat density counts</td>
<td>13 December 2016*, 24 March, 21 June 2017</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>Cores along transects using 1mm mesh bags as sieve</td>
<td>28 December 2016*, 18 July 2017</td>
</tr>
<tr>
<td>Avifauna</td>
<td>Visual presence and behavior surveys; nesting surveys by USFWS</td>
<td>10 December 2016*, 5 January, 22 February, 18 April, 24 April 2017</td>
</tr>
<tr>
<td>Grunion and Other Wildlife</td>
<td>Protocols follow www.grunion.org, and use the Walker Scale</td>
<td>Periodically as part of other surveys</td>
</tr>
<tr>
<td>Weather Conditions</td>
<td>Wind speed (Kestrel), max wind speed, air temperature, precipitation data (NOAA)</td>
<td>14 and 28 December 2016, 13 and 25 January, 4, 14, and 23 February, 24 March, 12 April, 21 June 2017</td>
</tr>
<tr>
<td>Elevation</td>
<td>Elevation profiles and cross-sections; topographic map</td>
<td>13 December 2016*, 24 March, 12 April 2017</td>
</tr>
<tr>
<td>Sand Deposition and Sediment Grain Size</td>
<td>MWAC method (Goossens et al 2000); sieve method; Empirical sand transport calculations (Hsu 1981)</td>
<td>13 December 2016*, 24 March 2017</td>
</tr>
<tr>
<td>Photo Point</td>
<td>Georeferenced photograph series from fixed locations</td>
<td>13* and 17 December 2016, 13 and 25 January, 4 February, 24 March, 25 April, 21 August 2017</td>
</tr>
</tbody>
</table>

* = baseline survey

For details on the individual protocols and sampling design, refer to the Santa Monica Beach Restoration Pilot Project Implementation and Monitoring Plan.

Wrack Cover

Wrack cover surveys were conducted to determine the percent cover, composition by species, and average depth of macrophyte wrack in the wash zone area directly in front of the restoration site and at a control site. A total of four line-intercept transects were surveyed, consisting of two transects in the wash zone directly in front of the restoration site and two transects in the wash zone of the control areas (outside the project area). Wrack was identified to species [e.g. giant kelp (*Macrocystis pyrifera*), Figure 21]. These transects also recorded trash, tar, driftwood, or other detritus in a similar manner. Transects were surveyed on 28 December 2016, and 14 February, 12 March, and 21 June 2017.

Both the restoration and control sites had the same low cover of wrack during the baseline surveys (December 2016) (Figure 22). The highest cover of wrack was seen in the June survey, approximately six months post-restoration within the restoration area and was made up of predominantly giant kelp at approximately 7% average cover (Figures 21 and 22). These data can be compared to a wrack cover of zero in the control sites in June 2017, within an area that received daily grooming over the summer months as a management strategy to lessen trash along the heavily recreated beaches of Santa Monica.
Wrack cover included four species: *Macrocystis pyrifera*, *Pyllospadix torreyi*, *Sargassum spp.*, and *Egregia menziesii*.

Terrestrial debris and trash were variable throughout the survey months (Figures 21 and 22). The bottom photograph in Figure 22 shows some small sticks and twigs classified as terrestrial debris. It also shows small bits of *Pyllospadix torreyi*, or surfgrass. Interestingly, during the February and March surveys, average trash cover was found to be higher at the control sites than within the restoration (Figure 22). This may be due to less frequent grooming during the non-summer months, or the maintenance of the restoration area through hand-removal of trash accumulation. Trash was found to be at zero percent cover for both areas during the December baseline surveys, and slightly higher (0.06%) within the restoration area during the June surveys (Figure 22). Terrestrial debris, which includes leaf litter, sticks and twigs, and other natural debris, was found to vary between the restoration and control sites and across the survey months.

![Figure 21](image1.jpg)
Figure 21. Photographs of giant kelp (*Macrocystis pyrifera*, top) and mixed wrack and terrestrial debris (bottom) along a wrack transect in the restoration area (21 June 2017).
Figure 22. Average percent cover of wrack by species (top) and terrestrial debris and trash (bottom) in the restoration area and control site across the four surveys.
Vegetation Cover and Seedling Density

Vegetation cover surveys can be used to provide a wide range of information and data, including: summarizing the prevalence of native and non-native plant cover, determining species cover, relative species richness and diversity, and assessing canopy height. The primary objective of the transect- and quadrat-level cover surveys for this project was to assess the approximate cover of native coastal strand vegetation over time. The line-intercept transect and cover class quadrat survey methods are described, along with example field data sheets, in SOP 3.2 Vegetation Cover Surveys (TBF 2015b). Data were evaluated as percent cover by species. Additionally, individual seedlings were counted within randomly selected quadrats as part of the Cover Class Quadrat vegetation cover assessment method semi-annually. Data are presented as germinated seedlings per square meter categorized by species and nativity, following assessment procedures described in SOP 3.4 Seed Bank Germination (TBF 2015c), and seedling data are also extrapolated up to the whole restoration area at approximately 6,900 m². Four vegetation transects were surveyed within the restoration area, and compared to two control transects surveyed outside the restoration area (approximately 100 m south of the restoration area). Vegetation was surveyed on 13 December 2016 (baseline survey prior to germination of any seeds), 24 March, and 21 June 2017.

All four of the seeded vegetation species germinated within and immediately adjacent to the restoration area (i.e. beach evening primrose, sand verbena, beach bur sage, and beach salt bush) (Figure 23). Additionally, two other vegetation species germinated within the project area: woolly heads (annual native herb, *Nemacaulis denudata*) (Figure 24) and sea rocket (non-native, *Cakile maritima*) (Figure 25). Woolly heads, a native and possibly rare species variant, was not in the seed mix as confirmed by the seed provider; thus, it is probable that there was either an existing seed bank for this species already along Santa Monica Beach, or that it was transported by wind, waves, birds, or humans. Combining all transects surveyed, the highest proportion of cover was found to be beach bur sage, followed closely by beach evening primrose. Sea rocket had the least cover of all vegetation species and was periodically removed by hand from within the restoration area.
Figure 23. Total distance (m) by species for all transects combined.

Figure 24. Photograph of woolly heads (native *Nemacaulis denudata*) growing in the restoration area (18 July 2017).
Vegetation cover assessed during the baseline (December 2016) surveys at within both the restoration area and control site was zero (Figure 26), and remained zero at the control site throughout all survey times. Native vegetation cover was much higher than non-native cover (sea rocket) during all surveys, and the native cover increased over time to a maximum overall percent cover of just over 1.5% during the June survey (Figures 26 and 27). Vegetation cover was highest on the eastern portion of the restoration area, becoming sparser towards the water line. Vegetation is likely to continue to increase and become more complex over time, though naturally-occurring coastal strand habitats also usually have a significant portion of bare sand, even after becoming mature vegetation communities.
Figure 26. Average native and non-native vegetation cover during all surveys within the restoration area (top) and at the control site (bottom).
Both the baseline survey and each of the control surveys (December, March, and June) found zero seedlings on all transects. By the time of the June surveys, seedlings were identified much more prominently as vegetation cover, thus, instead of “seedling counts”, flowering species were identified. Table 3 displays the results of the seedling counts from the 24 March 2017 survey and extrapolates the results up to the total project area (approximately 6,900 m²) by species. Note that the extrapolated data are based on averages and are thus not likely to represent an exact numerical count for the area, but are considered estimates (rounded down to the closest thousand). The total estimated number of seedlings in March across the entire project area was 157,000, weighted heavily by the beach bur sage as the most frequently identified germinated seedling (Table 3). Woolly head seedlings were not found within the surveyed quadrats and are thus underrepresented as a zero data point. Figure 28 represents a photo series over time of a variety of vegetation species.
Table 3. Seedling data results by species for 24 March 2017 reported as counts, number / m², and extrapolated counts for the entire restoration area (last row).

<table>
<thead>
<tr>
<th></th>
<th>Beach bursage</th>
<th>Beach saltbush</th>
<th>Sand verbena</th>
<th>Beach evening primrose</th>
<th>Woolly heads</th>
<th>Sea rocket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Seedlings</td>
<td>338</td>
<td>33</td>
<td>9</td>
<td>70</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Average Seedling Count / m²</td>
<td>16.9</td>
<td>1.65</td>
<td>0.45</td>
<td>3.5</td>
<td>0.00</td>
<td>0.45</td>
</tr>
<tr>
<td>Total Estimated for Restoration Area</td>
<td>116,000</td>
<td>11,000</td>
<td>3,000</td>
<td>24,000</td>
<td>0</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Figure 28. Photographic series of various seedling species over time (top: 25 January, middle: 12 April, bottom two: 21 June 2017).
Invertebrates
Invertebrate data were collected using techniques described in detail in Dugan et al. 2015 and led by researchers from Coastal Restoration Consultants, Inc., and the University of California, Santa Barbara. Common examples of macroinvertebrate indicator taxa in southern California include talitrid amphipods such as *Megalorchestia*, and the common sand crab, *Emerita analoga*. Invertebrates were surveyed on 28 December 2016 and 18 July 2017, and led by University of California, Santa Barbara scientist, David Hubbard. Six within-restoration transects were surveyed and compared to data from six control transects located several hundred meters south of the restoration area (Figures 29 and 30). For additional method details, refer to the Santa Monica Beach Restoration Pilot Project Implementation and Monitoring Plan (October 2016).

![Figure 29. Photograph of researchers conducting invertebrate core surveys (28 December 2016).](image)
The December baseline surveys indicated low background levels of upper beach invertebrates (e.g. beach hoppers, *Megalorchestia californiana*) at between 300-400 individuals / m², with approximately the same number at both the restoration site and the control site. These data are indicative of the frequent beach grooming prior to restoration. Data from the July surveys were not available at the time of publication of this report, but are currently being processed in the laboratory. Dune beetles were visually present during the July surveys and were not present during the baseline (December) surveys, indicating a new colonization of these invertebrates post-restoration (Figure 31).
Avifauna

The presence and distribution of avifauna within an ecosystem is often used as an index of habitat quality due to their diet and vulnerability to environmental conditions (Conway 2008). Avifauna data are useful to characterize representative avian assemblages and spatial distributions within a particular area. Bird survey methods are described in detail, along with field data sheets, in SOP 5.1 Bird Abundance-Activity (TBF 2015d). The primary purpose of avifauna surveys for this project was to provide a general understanding of the bird community and corresponding behavior in the restoration area before and after restoration. Bird surveys were conducted by an ornithologist on 10 December 2016 (baseline, pre-restoration survey), and on 5 January, 22 February, 18 April, and 24 April 2017. Additionally, birds were recorded as part of other surveys such as vegetation or elevation, and as part of two student projects through Loyola Marymount University. All bird data results are combined and reported below, comparing birds found within the restoration area and immediately adjacent to those found several hundred meters away or flying over the area.

Frequently identified species on surveys included gulls and several shorebirds (e.g. willet, Tringa semipalmata) (Table 4, Figure 32). Shorebirds were observed both roosting (e.g. whimbrel) and foraging (e.g. willet) within the restoration area. Additionally, there were several shorebird species that were identified exclusively within the restoration area, including marbled godwit (Limosa fedoa) and, notably, the federally threatened western snowy plover (Charadrius alexandrinus nivosus), which produced the first egg-bearing nest in the Los Angeles region in almost 70 years within the restoration area (discussed further below). Several species of gull were also frequently identified in and around the restoration area, flying overhead, and in the adjacent ‘control’ sites. Urban species such as the rock pigeon (Columba livia) were identified in adjacent areas, but not within the restoration area.
Table 4. Avifauna species identified as present in the restoration area and in the surrounding area adjacent to the restoration. Data for all surveys were combined.

<table>
<thead>
<tr>
<th>Category</th>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Restoration</th>
<th>Adjacent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorebird</td>
<td>Western Snowy Plover *</td>
<td>Charadrius alexandrinus nivosus</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whimbrel</td>
<td>Numenius phaeopus</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Willet</td>
<td>Tringa semipalmata</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Sanderling</td>
<td>Calidris alba</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Marbled Godwit</td>
<td>Limosa fedoa</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Open Water</td>
<td>Surf Scoter</td>
<td>Melanitta perspicillata</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA Brown Pelican **</td>
<td>Pelecanus occidentalis californicus</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gull</td>
<td>California Gull</td>
<td>Larus californicus</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ring-billed Gull</td>
<td>Larus delawarensis</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Western Gull</td>
<td>Larus occidentalis</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Urban</td>
<td>Canada Goose</td>
<td>Branta canadensis</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Crow</td>
<td>Corvus brachyrhynchos</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Rock Pigeon (Feral Pigeon)</td>
<td>Columba livia</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* = rare species listed as threatened by USFWS
** = previously listed species, but delisted in 2008

Figure 32. Photograph of willet inside restoration area (4 March 2017, credit: M. Grubbs).
Western Snowy Plover

Four western snowy plovers were identified roosting within the restoration area during a TBF bird survey on 23 February 2017. Care was taken to avoid disturbance to the birds, and an ornithologist was notified. Plovers are known to overwinter in the vicinity (within an enclosure approximately 500 m south of the restoration area), but have not previously been identified using the specific restoration area of the beach. The restoration area falls within approximately the middle of the Santa Monica Beach critical habitat area for plovers (Subunit 45A, Figure 33), southwest of San Vicente Boulevard. As migrant plovers may start trying to identify breeding locations as early as March, the plovers were carefully monitored for several months moving in and out of the restoration area.

Dan Cooper, an ornithologist, detected a nesting plover within the restoration area on 18 April 2017 and confirmed the presence of one egg in a nest scrape containing bits of shells and adjacent debris. This confirmed nest was the first one in the Los Angeles region in almost 70 years. Local, state, and federal agencies were all immediately notified along with the Santa Monica Audubon Society, an important local stakeholder group who have conducted bird surveys in Los Angeles for many decades and who maintain the plover enclosure on the southern portion of Santa Monica Beach. On 24 April, US Fish and Wildlife Service (USFWS), who have jurisdiction over federally threatened species, several ornithologists, and TBF installed a mini-enclosure over the nest and confirmed the presence of three eggs. After the mini-enclosure was installed, the male plover immediately returned to the nest (Figures 34 and 35).

Unfortunately, between 27 and 29 April, extremely high winds occurred, with gusts of approximately 37 mph, and the nest was buried and subsequently abandoned. Several plovers remained in the area in May, but were not observed nesting. Subsequent successful nesting attempts were made by plovers in the 2017 breeding season at Malibu Lagoon and Dockweiler State Beach, the first fledged plover chicks in the Los Angeles region in decades.
Figure 33. Map of WSP critical habitat (Subunit CA 45A) from the Federal Register (19 June 2012).
Figure 34. Photograph of nesting western snowy plover (credit: Tom Ryan 24 April 2017).

Figure 35. Group photograph of installation team for the mini-enclosure including several ornithologists and USFWS (24 April 2017).
Grunion and Other Wildlife
California grunion are a species of marine fish found only along the coast of southern California and northern Baja California. They exhibit unique spawning behavior, laying and fertilizing eggs completely out of the water, on high spring tides along sandy beaches (Martin 2006). Grunion spawn between March and August, with peak events between April and June.

While no grunion were seen spawning within the restoration project area, one grunion “run” (spawning event) was identified during the season, approximately 2 kilometers south of the project area. Grunion surveys will be conducted multiple times in 2018 to confirm presence or absence of spawning events in or adjacent to the restoration area.

In addition to birds frequently seen in and around the restoration area and human uses, wildlife using the area included dolphins frequently seen offshore foraging in the surf zone, jumping fish, small clams, and one sea lion also seen in the surf zone offshore.

Physical Characteristics
Physical characteristics help to characterize the beach in comparison to other locations (e.g. elevation profiles; Dugan et al. 2015). Additionally, site checks were performed at least quarterly to assess the condition of the fence, collect trash, etc. Specific data for physical characteristics collected and summarized in this report include precipitation, wind, temperature, climate data, elevation profiles, sand deposition, and sand grain size. Supplemental weather data were downloaded from Los Angeles County Department of Public Works Electric Avenue precipitation gage and National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Online.

Overall, the restoration site exhibited physical differences as compared to control locations and itself over time primarily through the accretion of sand along the fence line and wrack line. Weather patterns and climate data collected from external sources are meant to be representative, not indicative of specifics within the restoration area at any given moment in time.

Precipitation
The total rainfall for the water year (beginning on 1 October 2016 through 31 July 2017) was 16.83 inches, as measured at the Los Angeles County Department of Public Works Electric Avenue precipitation gage (closest gage to the restoration area). The highest rainfall month was 6.77 inches in January 2017, with several large storm events (e.g. over 2 inches on 22 January 2017) (Figure 36).
Figure 36. Precipitation total (inches) by month for the water year (beginning on 1 October 2016 through 31 July 2017). Data were downloaded from Los Angeles County Department of Public Works Electric Avenue precipitation gage on 29 August 2017.

Wind and Temperature

Average sand temperature, wind speed, and maximum wind speed (over three minutes) were recorded in each of the two treatment plots using a small, hand-held weather meter (Kestrel®) and a Fluke Mini IR Thermometer®. Data were collected on 14 and 28 December 2016, 13 and 25 January, 4, 14, and 23 February, 24 March, 12 April, and 21 June 2017. These data are reported as collected from within the restoration area, specifically. NOAA climate data follow below.

Air temperature, sand temperature, and wind speeds were all highly variable depending on the specific conditions of the survey days. Sunnier days and summer months had higher temperatures up to 36.5 °C recorded as the sand temperature (Table 5). The wind speed on average ranged from approximately 1.7 to 5.7 m/s with gusts of up to 7.1 m/s at 1.5 m in height, with the average wind speed recorded along the ground ranging lower at approximately 1.6 to 4.2 m/s with gusts of up to 5.0 recorded during surveys (Table 5).

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Air</th>
<th>Sand</th>
<th>Maximum (1.5 m)</th>
<th>Average (1.5 m)</th>
<th>Maximum (ground)</th>
<th>Average (ground)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>December</td>
<td>18.7</td>
<td>18.8</td>
<td>2.1</td>
<td>1.7</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>January</td>
<td>14.2</td>
<td>19.9</td>
<td>2.9</td>
<td>2.4</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>14.5</td>
<td>26.7</td>
<td>7.1</td>
<td>5.7</td>
<td>5.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>17.2</td>
<td>22.4</td>
<td>2.5</td>
<td>2.1</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>----</td>
<td>----</td>
<td>3.0</td>
<td>2.7</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>18.8</td>
<td>36.5</td>
<td>2.5</td>
<td>2.1</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>24.4</td>
<td>29.3</td>
<td>4.0</td>
<td>3.2</td>
<td>2.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>
NOAA Climate Data

National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Online were downloaded for the Santa Monica Municipal Airport Station on 1 September 2017 for the time period 1 October 2016 through 30 August 2017. The data results are summarized in Tables 6 and 7. Notably, gusts were recorded in April of up to 37 mph (or 16.5 m/s) (Table 7).

Table 6. Table displaying NOAA temperature and humidity monthly data for the Santa Monica Municipal Airport Station (downloaded on 1 September 2017).

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Temperature (°C)</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>2016</td>
<td>October</td>
<td>18.9</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>17.0</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>14.0</td>
<td>27.2</td>
</tr>
<tr>
<td>2017</td>
<td>January</td>
<td>12.7</td>
<td>23.9</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>13.5</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>15.0</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>16.7</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>16.2</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>18.1</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>20.9</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>20.8</td>
<td>29.4</td>
</tr>
</tbody>
</table>

Table 7. Table displaying NOAA wind speed and precipitation monthly data for the Santa Monica Municipal Airport Station (downloaded on 1 September 2017).

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Wind Speed (mph)</th>
<th>Precipitation (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>2016</td>
<td>October</td>
<td>4.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>4.2</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>4.4</td>
<td>21.0</td>
</tr>
<tr>
<td>2017</td>
<td>January</td>
<td>4.9</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>4.1</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>5.6</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>5.2</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>4.7</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>4.9</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>4.8</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Elevation Profiles

Elevation profile data were collected via four transects within the restoration area and two control transects outside the restoration area (approximately 100 m south of the restoration area). Elevation profiles provide a method to measure topographical changes within the seeded fenced area and beach face over time. Two elevation profile surveys have been conducted since the installation of the restoration fence, one on 13 December 2016, which serves as a pre-restoration baseline, and another on 24 March 2017. Future surveys will allow for a more thorough assessment of sediment movement over a period of years to support the evaluation of the restoration area as a possible buffer from climate change impacts such as sea level rise and wave erosion, though seasonal changes may also be captured.

All transects show an inland shift of berm morphology between the December and March surveys, and a change in beach face slope, typical of seasonal change due to a shift in wave energy. Berm heights remained the same in control transects, while the berm height in all restoration transects rose in elevation, up to 0.59 m in one transect. The backshore beach showed little to no change in the control elevation profiles. Within the seeded area of the restoration site, elevation profiles showed sand accumulation beginning at the berm and sloping down towards the fence line in three out of four profiles.

A high-resolution elevation survey using a Trimble Geo7x GPS was conducted on 12 April 2017. Elevation points were then analyzed in a geographic information system (GIS) to create a topographic surface of the restoration site. Figure 37 displays the topographic map results from the GPS elevation survey, approximately four months after the fence installation and seeding of the restoration area. As the transect data indicate, the area was fairly flat and uniform prior to the restoration. By the time of the April survey, the beginning of sand build up was evident along the fence line, especially the northwest fence and the southeast corner of the restoration area (Figure 38).
Figure 37. Topographic map of restoration area (survey conducted on 12 April 2017).
Figure 38. Photograph of sand build-up along the northern fence line in the restoration area (9 May 2017).

The sand berm adjacent to the ocean water line fluctuated and varied with the tidal patterns, from an initial steep slope in December 2016 (Figure 39), to a much more gradual slope by mid-2017. The berm edge receded during the winter and accreted during the summer months. Additional surveys to track the berm fluctuations over time will be necessary.

Figure 39. Berm topography (left: 17 December 2016, right: 25 January 2017).
Sand Deposition and Grain Size
A set of baseline and post-restoration sand samples were collected from two control transects and four transects on 13 December 2016 and 24 March 2017, respectively. Three samples were collected from each transect (approximately 3 meters south of the transect line to avoid footprints), including two dry samples off the 15m and 30m transect meter mark, and a wet sample near the waterline on the beach face. Samples were weighed before and after drying to measure moisture content, then each sample was sorted using a set of sieves measuring from 2mm (very fine pebbles) to 0.06mm (very fine sand). In general, dry sand within the restoration site (averaged for 15m and 30m) saw a shift in grain size from medium and fine sand to course sand (Figure 40). Additionally, all post-restoration samples within the restoration site had a small increase in very fine pebbles, whereas control sites did not.

Figure 40. Baseline (top) and post-restoration (bottom) sand grain results for all transects (dry sample averages).
Wet sand results were reported separately (Table 8). Results from the wet sand samples were variable between the baseline survey and the post-restoration survey, but displayed somewhat similar results at both the control transects and the restoration transects. As the wet sand is outside of the area actively maintained for the restoration, the similarity between the control and restoration results for the wet sand was expected. Similarly, the variability between the baseline and post-restoration surveys is likely due in part to the collection of the samples in two different wet sand locations based on the seasonal movement of the berm and wave erosion. Baseline sand was dominated by the course and medium grain sizes, whereas the March, post-restoration sand, was predominantly course sand only (Table 8).

Table 8. Grain size results from December 2016 (baseline) and post-restoration (March 2017).

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>Control Transects</th>
<th>Restoration Area Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Baseline (Dec 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbles (Very Fine)</td>
<td>0.07%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Sand (Very Course)</td>
<td>0.38%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Sand (Course)</td>
<td>78.52%</td>
<td>58.34%</td>
</tr>
<tr>
<td>Sand (Medium)</td>
<td>10.84%</td>
<td>33.34%</td>
</tr>
<tr>
<td>Sand (Fine)</td>
<td>10.12%</td>
<td>8.28%</td>
</tr>
<tr>
<td>Sand (Very Fine)</td>
<td>0.06%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Control Transects</th>
<th>Restoration Area Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Post-Rest (March 2017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbles (Very Fine)</td>
<td>0.21%</td>
<td>2.01%</td>
</tr>
<tr>
<td>Sand (Very Course)</td>
<td>4.13%</td>
<td>9.22%</td>
</tr>
<tr>
<td>Sand (Course)</td>
<td>81.82%</td>
<td>78.78%</td>
</tr>
<tr>
<td>Sand (Medium)</td>
<td>6.01%</td>
<td>5.69%</td>
</tr>
<tr>
<td>Sand (Fine)</td>
<td>7.72%</td>
<td>4.24%</td>
</tr>
<tr>
<td>Sand (Very Fine)</td>
<td>0.09%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

Figure 41. Sand grain examples in restoration site [left: pebbles (very fine); middle: course sand; right: fine to very fine sand].

Sand transport measurement protocols involved using Modified Wilson and Cooke (MWAC) samplers to determine actual in-field sand transport rates (Figure 42). MWAC samplers were deployed for 30 minutes to one hour on multiple field surveys and failed to collect sand. This protocol will continue to be attempted during future surveys, targeting high wind conditions to maximize sand collection success. Additionally, data collected in the field combined with sand grain analyses was used in an empirical model to calculate wind-blown sand transport (Hsu 1981). Hsu’s calculations will provide a future
method to cross-validate predictive wind-driven sand transport as compared to MWAC samplers for direct measurement. Continued monitoring will inform trends in sand transport within the restoration and control site. Observationally, a shift in courser sand and cobble was seen in the restoration site towards the ocean, where high king tides over washed portions of the site during the winter (Figure 43).

Additionally, sand transport and deposition has been occurring along fence lines and around larger vegetation patches and wrack. High resolution elevation surveys confirm an increase in sand deposition along the fences and behind the berm (Figure 44).

Figure 42. MWAC samplers deployed at restoration site.

Figure 43. Cobble present in site after high king tide events (25 January 2017).
Figure 44. Sand accretion along fence in restoration site (29 April 2017).

Photo Point

Photo point monitoring helps to identify seasonal site changes and project-level changes as a result of the restoration activities (e.g. native vegetation growth, plant hummock formation). Survey methods are described in detail in SOP 7.2 Level 2 Photo Point (TBF 2015a). Photographs can be used as qualitative assessments of broad-scale changes following restoration activities and plant hummock development over time. Seventeen photographs were taken at nine stations on 8 days. Two locations were chosen to present in this report as the best representative photographs taken on 13 and 17 December 2016, 13 and 25 January, 4 February, 24 March, 25 April, 21 August (Figures 45a, 45b, 46a, and 46b). While the vegetation cover is still difficult to see within the restoration area, small individual plants are visible starting in the spring months. Most notable are the changes in sand grain size over time, visible footprints indicating use of the site, and the changes in sand deposition towards the fence lines on three sides of the restoration area (ocean ward side is not fenced to allow for movement in and out of the restoration area).
Figure 45a. Photo Point 1A (bearing 88°) surveyed on (A) 13 December 2016; (B) 17 December 2016; (C) 13 January 2017; (D) 25 January 2017.
Figure 45b. Photo Point 1A (bearing 88°) surveyed on (E) 4 February 2017; (F) 24 March 2017; (G) 25 April 2017; (H) 21 August 2017.
Figure 46a. Photo Point 1A (bearing 210°) surveyed on (A) 13 December 2016; (B) 17 December 2016; (C) 13 January 2017; (D) 25 January 2017.
Figure 46b. Photo Point 1A (bearing 210°) surveyed on (E) 4 February 2017; (F) 24 March 2017; (G) 25 April 2017; (H) 21 August 2017.
Adaptive Management, Maintenance, and Site Use

Adaptive management is implemented based on the success of the project as interpreted by TBF, the beach managers, the City of Santa Monica, and an advisory group of scientists. The monitoring components and resulting data have been integral to evaluate the project. TBF, with the help of our volunteer internship program and several dedicated students from LMU, have undertaken a hands-on, community-level maintenance strategy without the use of mechanized equipment, including trash removal and invasive species removal. Site checks, invasive plant removal, and trash collection have occurred at least monthly (semi-monthly for the first few months), since the project was implemented. These efforts will continue (possibly at a reduced rate, if feasible) for a duration of no less than five years after the project began in 2016. Evaluation of the project will occur annually via an annual report, including a summary of monitoring data results, and will be provided to the City, DPR, and the Commission and made publically available on TBF’s website (www.santamonicabay.org).

Site visits will continue to be conducted quarterly to visually assess the restoration progress and evaluate the need for maintenance activities. The overall condition of the restoration areas will continue to be noted, along with detailed observations including presence of invasive species re-growth or environmental stressors (e.g. prolonged dry periods). Photographic documentation of any observations of concern will occur. If invasive vegetation is found in a restored area, adaptive management steps such as weed removal by hand or with hand tools will continue to be taken. Similarly, litter or trash collection and removal from site will continue to be conducted at least bi-monthly.

Thus far, one non-native species, sea rocket, has invaded the project area to a very minimal extent. The areas where it is present do not appear to be directly negatively affecting the native vegetation; however, it continues to be thoroughly monitored and removed periodically from within the restoration area. It is likely to continue sprouting, at least until the native vegetation becomes fully established, because there are source seed populations along the bike path and back dune areas adjacent to the project site, and an assumed pre-existing seed bank in the sand of the project area (Figure 47).

Figure 47. Non-native sea rocket within the project area (21 August 2017).
Trash continues to be low within the restoration area. Interestingly, there is often more trash that is picked up in the sand immediately adjacent to the restoration plot, in beach areas that are frequently groomed. It is likely that the large grooming rakes either miss or bury some of the smaller tiny bits of plastic and polystyrene foam that are frequently found adjacent to and within the project area. Frequently seen trash items include cigarette butts, small bits of plastic, plastic straws, polystyrene foam, candy wrappers, and bits of coffee cups (Figure 48). Infrequently seen items include things like flip-flops, Frisbees, and tennis balls (Figure 48).

Figure 48. Trash collected after a storm event from within and adjacent to the project area (25 January 2017).

Site Use

An important goal of the pilot restoration project is to evaluate whether heavy recreational use of beaches in Los Angeles and natural habitats to benefit birds and wildlife can coexist. Human use data from this project may serve to inform other similar efforts in southern California. One goal of the project was to encourage another, less frequently seen, use of Los Angeles beaches, which is to allow people and families the chance to interact with natural habitats along the beach. As such, the restoration area is not fenced off completely from the public (the shoreward side is left fully open), and recreating inside the project area was only discouraged at the request of USFWS once the plovers (a federally threatened species) began nesting inside the restoration area. However, the sightings of this rare species also brought birdwatchers and other tours to the area. Monitoring was conducted by the Santa Monica Audubon Society and several local ornithologists and followed protocols form USFWS.

Human use data from the site visits suggest that both locals and visitors are interacting positively with the site through everything from jogging through it along the symbolic pathway, surfing next to it, and birdwatching along the perimeter. Frequent human uses of the area include walking, jogging, biking along the adjacent bike path, sun bathing, walking dogs, surfing, paddle boarding, and skim boarding (Figure 49). Additional uses include birdwatching and fishing. Many people have questions as they interact with TBF staff collecting data for surveys such as: “Why is the vegetation here?” “Is this better
for birds?” “Will there be flowers?” All of these questions and many more are answered by staff, and all interactions have thus far been positive. It seems that both locals and visitors alike are responding encouragingly to the restoration area, which bodes well for the future of the site and its ability to answer other goals such as whether or not it can increase coastal resilience against climate change stressors like wave erosion and sea level rise. It is heartening when most people suggest expanding into a larger area. The site has also provided many opportunities to teach students about beach ecology. Several LMU students have conducted research and many more have visited the site since implementation. On 4 March 2017, a class of over 50 UCLA students in a geomorphology course visited the site to learn hands-on about applied physical surveys and beach ecology.

Figure 49. Human use of the restoration site [top: TBF-led tour with US EPA staff (15 February 2017); middle: stand up paddle boarders using the symbolic pathway through the middle of the restoration area (17 December 2016); bottom: beach running event in front of fenced restoration area (24 August 2017)].
Conclusions and Recommendations

The first eight months following the pilot project implementation had a number of valuable successes and learning experiences. As the project was meant to be an experimental pilot for the region, no specific, quantifiable success criteria were set; however, the project can be evaluated against its ability to meet the project goals. The project positively engaged the public, created new partnerships and outreach connections, restricted grooming in an approximately 3-acre area, allowed vegetation to grow and the beginning of sand hummocks to form along fence lines, provided comprehensive science-based monitoring data to inform soft-scape beach restoration solutions, and is bringing back a rare coastal habitat type to the Los Angeles region.

Additionally, the increased functions within the restoration habitat area included benefits to several notable species. Nesting of the federally threatened western snowy plover had not been recorded in the Los Angeles region for almost 70 years, and the first nest for the Los Angeles region was found within the restoration area and contained three eggs. Plovers were repeatedly identified on bird surveys through the spring months. Unfortunately, due to heavy wind, the nest was buried and abandoned. But its presence and that of several additional subsequent nests this year in other parts of Los Angeles suggests that the possibility of future nests by plovers in the area is likely. Furthermore, a new native plant species, possibly a rare variant of woolly heads (*Nemacaulis denudata*), was identified as germinating in the project area. As the seeds of this species are not sold by the seed provider, it is probable that there was either an existing seed bank for this species already along Santa Monica Beach, or that it was transported by wind, waves, birds, or humans. It was not identified in areas adjacent to the project site. Another new addition to the restoration project area was dune beetles, which provide an increased layer of the food web available to foraging birds and wildlife. Specimens were not collected for identification, but may potentially be collected in the future.

Data suggest that the restoration area is considerably different from both the control sites and from itself over time as compared to the baseline surveys, especially for vegetation and sand morphology, though (as expected) vegetation cover remains fairly low after the first growing season. Multiple years will allow an evaluation of the vegetation cover trend over time. It is likely that the vegetation community will continue to establish, but will probably remain somewhat patchy, as is the trend for natural coastal strand habitat types. The variability of the berm over time and the changes in elevation suggest that longer periods of time for scientific evaluation for these parameters will also allow for additional trends to be defined. Future monitoring will continue to inform sand morphology within the restoration site in response to vegetation growth, fence placement, and seasonal changes from storms, king tides, and wave energy. Additionally, elevation profile data will provide information to understand the effects of sand grooming versus the development of natural beach morphology over time.

One suggestion for future projects with a similar set of existing uses is to have a similar set of strong public outreach components prior to the initiation of the project and to directly engage local stakeholder groups. A significant effort was made to reach out to local residents, stakeholder groups, interested parties, beachgoers, and all of the agencies and organizations who provide some input to beach management in the area. This effort went far beyond requirements for the permits and included setting up stakeholder meetings to answer questions, incorporating feedback on project planning from
the public, and working with the City of Santa Monica to announce the project in public meetings and to all of the user groups such as lifeguards, police, maintenance workers, and other City and County groups. Additionally, much of the credit to the aforementioned results also goes to the City of Santa Monica for their efforts to engage the public, take a leadership role on permitting, and for their ongoing support and vision.

Another suggestion for future projects along beaches is to incorporate many of the same or similar monitoring methods that will allow for comparisons between-projects. This will allow for an evaluation across multiple scales and in different areas with different levels of sand accretion or erosion, wave patterns, weather patterns, and vegetation growth over time. Other, more passive restoration projects could also be evaluated, such as restricting grooming to other areas of the beach. Annual reports will continue to be made available for public download on TBF’s website: www.santamonicabay.org.
Literature Cited

Western snowy plover chick (National Geographic 2016) Santa Monica Beach (TBF 2015)